class: center, middle, inverse, title-slide # Mapping
Trypanasoma cruzi
Infection Prevalence ### Andreas Bender (
@adibender
) ### Nick Golding, Andre Python, Catherine Moyes ### 2019/03/18 --- # *Trypanosoma cruzi* and Chagas American trypanosomiasis, or **Chagas disease is a leading cause of heart disease in Latin America** - It is **one of the 10 neglected diseases addressed by the London Declaration** which calls for **control and elimination of these devastating diseases by 2020**, based on the World Health Organization (WHO) Road map for overcoming the global impact of neglected tropical diseases. - Caused by infection with the *Trypanosoma cruzi* parasite - Transmitted to humans by triatomine vectors (100 species from 18 different genera) <br> .boxed_grey[ The primary aim of this project is to **map the prevalence of** ***T. cruzi*** **infections in vector species**, in order to investigate spatial heterogeneity in vectorial transmission, to **target vector control**, and to **quantify the population at risk**. ] --- layout: true class: split-three .column.bg-main1[.content.vmiddle[ <br> #### 1. Species distribution <img src="figures/p_presence_raw.png"> - `\(\sim\)` 50 different species - presence only data - preferential sampling ]] .column.bg-main2[.content[ <br> <br> #### 2. Infection prevalence in vectors <img class="center", src="figures/p-spat-vect-inf-prev-1.png"> - point- and <br> polygon-level data - spatial sparseness ]] .column.bg-main3[.content.vmiddle[ <br> #### 3. Infection prevalence in humans .img.fill[![](figures/p_hiprev_raw.png)] - additional data set of <br> acute cases ]] # Data base --- class: show-100 --- class: show-110 count: false --- class: show-111 count: false --- layout: true class: split-three # Road map $$ `\begin{equation} \eta(s) = \sum_{p=1}^{P} f_{p}(x_p(s)) + GP(s);\ p(s) = (1-\exp(\eta(s)))^{-1} \end{equation}` $$ .row.bg-main1[.content[ <br> <br> <br> <br> #### 1. Species distribution - `\(y(s) \in \{0,1\} \sim Bernoulli(p(s))\)` - **Target-group background** approach for sampling bias correction - Stacked Generalization for combination of different methods (GAM, XGB, RF, ...) ]] .row.bg-main2[.content[ <br> <br> #### 2. Infection prevalence in vectors - `\(N_{positive}(s) \sim Binomial(N_{tested}(s), p(s))\)` - SDMs for **data augmentation** (combining point-level and polygon-level observations) - Model evaluation based on **spatial block-wise cross-validation** to improve transferability ]] .row.bg-main3[.content[ #### 3. Infection prevalence in humans - `\(N_{positive}(s) \sim Binomial(N_{tested}(s), p(s))\)` - Additional **uncertainty w.r.t. location of infection** <br> ( `\(\rightarrow\)` children under-10; integration of "acute cases" data base) ]] --- class: show-100 --- class: show-110 count: false --- class: show-111 count: false --- layout: true class: split-three .column.bg-main1[.content.vmiddle[ <br> #### 1. Species distribution .center[ <img class = "center" src="figures/p-pans-meg-gam.png" height="350"> ] ]] .column.bg-main2[.content[ <br> <br> #### 2. Infection prevalence in vectors <img class="center", src="figures/iprev-vectors.png"> ]] .column.bg-main3[.content.vmiddle[ <br> #### 3. Infection prevalence in humans <img src="figures/page_blank.jpeg"> ]] # Current progress --- class: show-100 --- class: show-110 count: false --- class: show-111 count: false --- layout:false class: # Open Questions and Discussion - How much does outdoor biting contribute to transmission? - How much does contamination of food/drink by vectors contribute to transmission? - How long after the elimination of vectors from homes (through insecticide spraying) will re-infestation occur? - Does insecticide resistance have the potential to derail the elimination of vectors from homes? - Does the effect of improved housing change if all houses are improved, compared to the situation where there is a mosaic of poor-quality and higher-quality housing? --- layout: false # References .font80[ <a name=bib-bhatt_improved_2017></a>[Bhatt, S, E. Cameron, S. R. Flaxman, et al.](#cite-bhatt_improved_2017) (2017). "Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization". En. In: _Journal of The Royal Society Interface_ 14.134, p. 20170520. DOI: [10.1098/rsif.2017.0520](https://doi.org/10.1098/rsif.2017.0520). <a name=bib-browne_contemporary_2017></a>[Browne, A. J, C. A. Guerra, R. V. Alves, et al.](#cite-browne_contemporary_2017) (2017). "The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors". En. In: _Scientific Data_ 4, p. 170050. DOI: [10.1038/sdata.2017.50](https://doi.org/10.1038/sdata.2017.50). <a name=bib-ceccarelli_datatri_2018></a>[Ceccarelli, S, A. Balsalobre, P. Medone, et al.](#cite-ceccarelli_datatri_2018) (2018). "DataTri, a database of American triatomine species occurrence". En. In: _Scientific Data_ 5, p. 180071. DOI: [10.1038/sdata.2018.71](https://doi.org/10.1038/sdata.2018.71). <a name=bib-miller_recent_2019></a>[Miller, D. A. W, K. Pacifici, J. S. Sanderlin, et al.](#cite-miller_recent_2019) (2019). "The recent past and promising future for data integration methods to estimate species’ distributions". En. In: _Methods in Ecology and Evolution_ 10.1, pp. 22-37. DOI: [10.1111/2041-210X.13110](https://doi.org/10.1111/2041-210X.13110). <a name=bib-phillips_sample_2009></a>[Phillips, S. J, M. DudĂk, J. Elith, et al.](#cite-phillips_sample_2009) (2009). "Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data". En. In: _Ecological Applications_ 19.1, pp. 181-197. DOI: [10.1890/07-2153.1](https://doi.org/10.1890/07-2153.1). <a name=bib-roberts_cross-validation_2017></a>[Roberts, D. R, V. Bahn, S. Ciuti, et al.](#cite-roberts_cross-validation_2017) (2017). "Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure". En. In: _Ecography_ 40.8, pp. 913-929. DOI: [10.1111/ecog.02881](https://doi.org/10.1111/ecog.02881). <a name=bib-valavi_blockcv_2018></a>[Valavi, R, J. Elith, J. J. Lahoz-Monfort, et al.](#cite-valavi_blockcv_2018) (2018). "blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models". In: _Methods in Ecology and Evolution_ 0.0. DOI: [10.1111/2041-210X.13107](https://doi.org/10.1111/2041-210X.13107). ] --- class: inverse center middle # Appendix <html> <div style='float:left'></div> <hr color='#EB811B' size=1px width=720px> </html> --- # Target-group background approach <img src="figures/block-generation-sdm-1.png"> 1. Convex hull around species presence locations 2. Extended convex hull 3. Define absences as reported presence locations of all other species 4. Set up spatial block-wise cross-validation (each fold 1-5 `\(\sim\)` same proportion of presences and absences) --- # GAM vs. XGB .center[ <img src="figures/p-pans-meg-gam-xgb.png" height="500px"> ]